Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement
نویسندگان
چکیده
BACKGROUND Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For this reason, pressure contour methods must be improved to capture changes in vascular properties and thus provide accurate conversion from pressure to flow. METHODS This paper presents a novel pressure contour method utilizing pulse wave velocity (PWV) measurement to capture vascular properties. A three-element Windkessel model combined with the reservoir-wave concept are used to decompose the pressure contour into components related to storage and flow. The model parameters are identified beat-to-beat from the water-hammer equation using measured PWV, wave component of the pressure, and an estimate of subject-specific aortic dimension. SV is then calculated by converting pressure to flow using identified model parameters. The accuracy of this novel method is investigated using data from porcine experiments (N = 4 Pietrain pigs, 20-24.5 kg), where hemodynamic properties were significantly altered using dobutamine, fluid administration, and mechanical ventilation. In the experiment, left ventricular volume was measured using admittance catheter, and aortic pressure waveforms were measured at two locations, the aortic arch and abdominal aorta. RESULTS Bland-Altman analysis comparing gold-standard SV measured by the admittance catheter and estimated SV from the novel method showed average limits of agreement of ±26% across significant hemodynamic alterations. This result shows the method is capable of estimating clinically acceptable absolute SV values according to Critchely and Critchely. CONCLUSION The novel pressure contour method presented can accurately estimate and track SV even when hemodynamic properties are significantly altered. Integrating PWV measurements into pressure contour analysis improves identification of beat-to-beat changes in Windkessel model parameters, and thus, provides accurate estimate of blood flow from measured pressure contour. The method has great potential for overcoming weaknesses associated with current pressure contour methods for estimating SV.
منابع مشابه
A System for Continuous Estimating and Monitoring Cardiac Output via Arterial Waveform Analysis
Background: Cardiac output (CO) is the total volume of blood pumped by the heart per minute and is a function of heart rate and stroke volume. CO is one of the most important parameters for monitoring cardiac function, estimating global oxygen delivery and understanding the causes of high blood pressure. Hence, measuring CO has always been a matter of interest to researchers and clinicians. Sev...
متن کاملNoninvasive measurement of cardiac stroke volume using pulse wave velocity and aortic dimensions: a simulation study
BACKGROUND Concerns about the cost-effectiveness of invasive hemodynamic monitoring in critically ill patients using pulmonary artery catheters motivate a renewed search for effective noninvasive methods to measure stroke volume. This paper explores a new approach based on noninvasively measured pulse wave velocity, pulse contour, and ultrasonically determined aortic cross sectional area. MET...
متن کاملPulse Wave Velocity and Cardiac Output vs. Heart Rate in Patients with an Implanted Pacemaker Based on Electric Impedance Method Measurement
The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output o...
متن کاملExtent of agreement between two methods for estimating acute directional changes of cardiac stroke index.
Cardiovascular physiologists frequently infer directional changes in cardiac stroke volume and cardiac output from changes in aortic pulse pressure and atrial pressure. Errors are probably not infrequent. The Hamilton and Remington pressure pulse contour method can also indicate directional fluctuations in cardiac stroke volume. Comparison of the results of the two methods of analysis in situat...
متن کاملTowards new indices of arterial stiffness using systolic pulse contour analysis: a theoretical point of view.
Total arterial stiffness plays a contributory role throughout aging and in numerous cardiovascular diseases, including hypertension. Aortic stiffening is responsible for an increased characteristic impedance (ie, the impedance to the left ventricular pulsatile flow), thus increasing the forward pressure-wave amplitude that contributes to pulse pressure elevation. Aortic stiffening also increase...
متن کامل